

Gesture Detection Based On
Mobile Sensor Data

Internship Report

Philipp Rettig

Student nr: 3053285

Study: BA Applied Computer Science
Ruprecht-Karls-Universität Heidelberg

From: 09.09.2013
 To: 07.10.2013

1

Table of Contents

Chapter Title Page

1 Abstract 2

2 Introduction 2

3 Related Work 3

4 Method and Experiments 3

 4.1 Preconditions 3

 4.2 Sensor Evaluation 4

 4.3 Filters 4

 4.4 Double-Integration Approach 5

 4.5 Dynamic Time Warp Approach 7

 4.5.1 How the App Works 12

5 Conclusion 14

6 Future Work 15

2

1. Abstract

This report describes my work on gesture detection algorithms using mobile devices during an internship

from September 9th 2013 to October 7th 2013 at the Heidelberg Collaboratory for Image Processing (HCI)

under supervision of Dr. Daniel Kondermann.

Given the task to test an approach that uses acceleration data generated by mobile sensors, I started to

implement an algorithm that translates the acceleration to position data via double integration. It turned

out that the sensors are too inaccurate and integrating the generated data twice magnifies those errors so

that the data is of no practical use.

With this finding and different sources1 confirming my results I started looking for alternatives.

An easy approach seemed to be the dynamic time warp algorithm: it uses a set of saved template gestures

and compares them with the gesture to be detected.

Clearly, this method would not be of practical use in a game, as every user would have to build a set of

template gestures beforehand, because the algorithm does not allow big deviation between gesture and

template and everyone draws a bit differently.

I decided to use this method, because the approach of comparing gestures seemed to be the most

promising as it does not rely on perfect sensor data. Dynamic time warp could be replaced with an algorithm

that works better with a huge set of templates to work around the discussed problems.

2. Introduction

The objective of this project is to be able to draw a symbol in the air with a mobile device, independent of

the user’s current location.

A common way of tracking mobile devices is using wireless networks, which is not guaranteed to exist in

every occasion. GPS signals cannot be used either, because the accuracy is not exact enough to detect small

differences of the device’s movement. Also, both approaches are not independent of the user’s location.

Remaining alternatives are the built-in sensors of mobile devices such as accelerometer and gyroscope.

The most intuitive approach on a gesture detection algorithm which makes use of mobile sensors is based

on calculating the position from a given device acceleration while the user draws a gesture. Therefore

acceleration has to be integrated twice to get the position:

𝑎(𝑡)=𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝑣(𝑡)=𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝑥(𝑡)=𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

∫𝑎(𝑡)𝑑𝑡=𝑣(𝑡)

∫𝑣(𝑡)𝑑𝑡=𝑥(𝑡)

1 "Sensor Fusion on Android Devices: A Revolution in Motion Processing." YouTube. N.p., 8 Oct. 2010. Web. 2
Dec. 2013. <http://youtu.be/C7JQ7Rpwn2k?t=23m21s>.

3

Although sensor data is many times more accurate than GPS for this purpose, it is not exact. Small mistakes

in this data measured by the sensors may lead to a huge deviation due to integrating twice.

Therefore the first step was to test this approach, find out if it is suitable for gesture detection and to find

a better solution if it does not meet the requirements.

I used Unity3D2 to implement the algorithms, a platform-independent and easy-to-use engine, providing

fast and lossless access to sensor data of mobile devices. My results also may be of use in a Unity based

game. This project has been developed on an Android device (LG Nexus 4), which is the reason why I draw

some connections to the Android API. Although it has not been tested, it should be possible to compile the

project for iOS devices flawlessly.

3. Related Work

While implementing the algorithm mentioned in the introduction, I found a java-project called

‘deadreckoning’3, which uses a similar approach but is restricted to android devices. ‘Dead Reckoning’ uses

the double-integration approach to estimate the current position through speed and/or acceleration

measurements and is primary used for navigation purposes. Furthermore the project contains kalman- and

low-pass-filters to enhance the accuracy of the sensor data, which I used as a basis for my filters.

4. Method and Experiments

4.1 Preconditions

I started writing a Unity-App, which sends the specific sensor-data from the device to the main program on

a desktop PC. This was accomplished through a server-client model using Unity’s network view. Although

there is an existing app called ‘Unity Remote’ 4, I could not use it, because it does not fulfil the requirements

only transmitting acceleration data whereas I also needed gyroscope data for gravity-independent

acceleration. In addition, my app uses a wireless-LAN instead of a USB-connection, where the cable has

sometimes been a problem while moving the device to form certain shapes.

Fig. 1: basic setup for testing purposes

The next step was to set up a testing environment, so I

created a Unity-Project and applied the network code to

connect with the app. To visualize the calculated data I

added a basic sphere which should represent the device-

movement just like a cursor.

The reset Button resets all collected data and puts the

sphere back to the center of the screen.

2 "Unity - Game Engine." Unity. N.p., n.d. Web. 2 Dec. 2013. <http://www.unity3d.com/>
3 "deadreckoning." Google Code. N.p., n.d. Web. 2 Dec. 2013. <http://code.google.com/p/deadreckoning/>.
4 "Unity Remote." Google Play. Unity Technologies A/S, 2 Aug. 2012. Web. 2 Dec. 2013.
<https://play.google.com/store/apps/details?id=com.unity3d.androidremote>.

4

4.2 Sensor Evaluation

Unity offers several different interfaces to mobile sensor data. ‘Input.acceleration’ is the equivalent to

Android’s sensor ‘TYPE_ACCELEROMETER’5 and represents the ‘raw’ acceleration. It includes the force of

gravity and is therefore not ideal for motion detection as it is mainly used to detect tilt or shake movements.

To get a gravity independent acceleration we could subtract the gravity vector (Unity’s gyro.gravity, which

is the equivalent to Androids ‘TYPE_GRAVITY’4) from above 3D-Vector. However, this was already done by

‘gyro.userAcceleration’ (equivalent to ‘TYPE_LINEAR_ACCELERATION’4).

Applying ‘gyro.userAcceleration’ directly to the pointer-object as a force lets it shake and jump extremely,

which makes it impossible to detect what has been drawn.

I now started to implement the main approach. To get rid of the errors and drift of the sensor data, I used

similar kalman- and lowpass-filters as in the Dead Reckoning project.

4.3 Filters

Low-pass filters cut off data above a certain threshold. In this case it smoothes values distorted by sensor

noise or similar inaccuracies. Kalman filters predict the variance through observing past measurements and

estimate the average error. This should smooth the sensor data even more and prevent the pointer from

jumping unpredictably.

Fig. 2 Kalman- versus LowPass-Filter

5 "Sensors Overview." Android Developers. N.p., n.d. Web. 2 Dec. 2013.
<http://developer.android.com/guide/topics/sensors/sensors_overview.html>.

5

4.4 Double-Integration Approach

After implementing the double integration, the calculated position is applied to the pointer object. The

pointer now moves correspondingly to the device’s movement as long as it is a line. When stopping or

changing directions the acceleration inverts in order to slow down velocity and the object accordingly.

Unfortunately the sensor data is not precise enough to slow down exactly to zero when stopped. Through

this error, the velocity drifts away from the correct value and moves the cursor to unwanted positions. As

a result, the pointer even moves when the device lies flat on a table and is not being moved.

Fig. 3 inaccuracy in breaking forces

Fig. 3 shows how acceleration force can differ from breaking force which makes the pointer uncontrollable.

To fix this problem, I tried to get rid of the breaking force manually.

My first approach was to ignore every second peak as it most likely represents a breaking force, and to set

the velocity to zero. A peak is an interval in the acceleration graph between two zeros. This approach makes

the pointer stop quite abruptly which makes controlling it feel unnatural. Furthermore, this does not work

for changes in direction. If a positive acceleration translates in a negative acceleration due to the device

being moved in the opposite direction, the whole second part gets cut off and therefore the change in

direction is completely ignored. For this reason this approach is not suitable.

6

My second approach was to make sure that every time the acceleration dropped to zero, velocity is set to

zero. This should stop the error from stacking as velocity is zeroed in periodic time frames.

Fig. 4 cut-off velocity (lines are spikier because this graph shows a smaller time frame)

Without ignoring the breaking force peaks, the pointer will be accelerated in the opposite direction even

faster, because velocity is set to zero. To compensate this, I added another force, which duplicates the

previous acceleration when the breaking force is applied. This does not fix the problem of acceleration and

breaking force not nullifying. Simply adding the compensation force to every peak only makes the pointer

move faster as forces are twice as strong and the gap between acceleration and breaking force is also

doubled (see Fig. 5).

7

Fig. 5 adding compensation force to every peak

It is now necessary to differentiate between breaking force and acceleration in the opposite direction, while

these two factors happen to be in the same peaks. If the sensors worked perfectly, acceleration and

breaking force would be identical, given the device is moved perfectly for that matter. Therefore an

estimate of the countering acceleration is the difference between the counter peak and the previous

acceleration.

The compensation algorithm now records acceleration data and applies the calculated compensation force

at the same time.

It is now possible to move the pointer accordingly to the real motion. Due to the inaccuracies it is still not a

practical use to detect gestures with this method, as the sensor drift sometimes moves the pointer out of

sight or it jumps as a result of zeroing. Drawing an image this way would have to be very accurate to be

interpreted and compared by image processing algorithms. These conditions are not fulfilled through this

method.

4.5 Dynamic Time Warp Approach

One of the biggest Problems of the previous approach was the double integration which scaled the errors,

resulting in false results. To avoid this, I looked for an algorithm working with raw senor data.

8

The Idea:

1. Record a sequence of sensor data representing a gesture and map this sequence to the gesture’s

name

2. Save these mapped gestures in a file/database

3. Go back to 1. and create multiple recordings for multiple gestures

4. Record the gesture that has to be detected

5. Compare the gesture from 4. with each gesture saved in the database using the dynamic time warp

algorithm

6. Return the name of the most similar gesture (found in 5.)

Dynamic time warp algorithm:

1. Given are recorded gestures 𝐺𝑟 and a template gesture from the database 𝐺𝑡 (see Fig.7 (a)). Both

are represented as 1D-Arrays, containing 2D-Vectors.

2. Generate a 𝑚×𝑛− matrix 𝐴 where 𝑚 is equal to the length 𝐺𝑟 and 𝑛 is of the length of 𝐺𝑡

(see Fig. 7 (b))

3. Set all elements to infinity

4. Set the first element (𝑎0,0) to zero

5. Iterate through all elements with a value of infinity

6. At element 𝑎𝑖,𝑗: calculate the distance from 𝐺𝑟[𝑖] to 𝐺𝑡[𝑗] which equals to the 𝑐𝑜𝑠𝑡

(see Fig. 7 (c))

7. Set 𝑎𝑖,𝑗 to 𝑐𝑜𝑠𝑡 plus the minimum of 𝑎𝑖−1,𝑗, 𝑎𝑖,𝑗−1 and 𝑎𝑖−1,𝑗−1. This calculates the cost at the

current positions including all the previous lowest costs, which generates a path of the

all-in-all lowest cost through the matrix (see Fig.7(b) and Fig.6)

8. Return the last element 𝑎𝑚,𝑛 as it equals the final cost (deviation) from the recorded gesture to the

template gesture

Fig. 6 Looking for the shortest path through the matrix6

6 Digital image. Blogspot. N.p., n.d. Web. 2 Dec. 2013. <http://1.bp.blogspot.com/-
306mlXxa3xc/UJKrL0PWIpI/AAAAAAAAAPI/COrdpMd-_kY/s1600/dp.png>.

9

Fig. 7 Visualization of the dynamic time warp algorithm7

Developing the app for this approach has been more complicated, because it requires not only networking

(client/server for debugging, see ‘Preconditions’), but also a way to switch between learning and detecting

gestures and access to a database that stores learned gestures. In the final version I removed the

networking part so that it works independently as a stand-alone app and used a simple text file with a

designated format on the device’s SD-card as database.

The files’ format allows the app to interpret stored gesture data. It is specified as follows:

#[Gesture Name 1] // ex. #Circle

[Vector1] // ex. (0.1, 0.0);

[Vector2] // ex. (0.1, 0.2);

[Vector3] // ex. (0.1, 0.3);

[Vector4] // ex. (0.1, 0.4);

[Vector5] // ex. (0.1, 0.5);

ƛ

#[Gesture Name 2] // ex. #Triangle

[Vector1] // ex. (0.1, 0.0);

[Vector2] // ex. (0.2, 0.2);

[Vector3] // ex. (0.3, 0.3);

[Vector4] // ex. (0.4, 0.4);

[Vector5] // ex. (0.5, 0.5);

ƛ

7 Digital image. Institute of Physics. N.p., n.d. Web. 2 Dec. 2013. <http://ej.iop.org/images/0967-
3334/33/9/1491/Full/pm424456f1_online.jpg>.

10

Following is the final implementation of the algorithm:

/** Calculates the distance between two gestures based on the DTW - Algorithm **/
private float DTWDistance(List <Vector2> template, List <Vector2> gesture, int w)
{
 in t lib_length = template.Count,
 gesture_length = gesture.Count;

 if (lib_length == 0 || gesture_length == 0) return float .PositiveInfinity;

 // g enerate the matrix with given vector data
 float [,] dtw = new float [lib_length, gesture_length];
 w = Mathf.Max(w, Math.Abs(lib_length - gesture_length));

 for (int i = 1; i < lib_length; i++)
 {
 for (int j = 1; j < gesture_length; j++)
 {

 // set all elements to infinity
 dtw[i, j] = fl oat .PositiveInfinity;

 }
 }

 dtw[0, 0] = 0; // f i rst element. Set cost to zero

 for (int i = 1; i < lib_length; i++)
 {
 for (int j = Math.Max(1, i - w); j < Math.Min(gesture_length, i+w); j++)
 {

 // calculate the costs to the current element
 float cost = Vector2.Dis tance(template[i], gesture[j]);

// choose the 'cheapest' element and add
// its cost to the overall sum of costs

 dtw[i, j] = cost + minimum(dtw[i - 1, j],
 dtw[i, j - 1],
 dtw[i - 1, j - 1]);

 }
 }

 return dtw[lib_length - 1, gesture_length - 1];
 }

11

4.5.1 How the App Works

As already described, the app differentiates between ‘Learning-Mode’ and ‘Detecting-Mode’, which are

quite self-explanatory.

The basic procedure for detecting a gesture is:

1. Make sure the mode is set to ‘Detecting’. This can be changed through the ‘Switch Mode’-button

(see Fig. 8)

Fig. 8 Startup screen in detection-mode

2. Press the ‘Record’-button once to record your gesture. The screen should now look like displayed

in Fig. 9

12

Fig. 9 Recording a gesture

3. Move the device according to the gesture you want to draw (see Fig. 10 for an example)

 Fig. 10 Example gesture (square)

13

4. After drawing, press the ‚Stop‘-Button to finish recording

5. The app now tries to detect the recorded gesture and prints the results on the screen

 (see Fig. 11)

Fig. 11 App detected the gesture 'Square'

Learning gestures works similar:

1. Make sure the mode is set to ‘Learning’

Fig. 12 Startup screen in learning-mode

14

2. Record your gesture just like in ‘Detection’-Mode.

3. Give your gesture a name and press ‘OK’ to save it.

Fig. 13 Saving a gesture as template

Gestures that were created this way are saved in the database that is used for future detections.

5. Conclusion

Double integration does not seem to be a good approach for gesture detection as the sensors create

unpredictable errors that cannot be filtered completely and therefore falsify every attempt to detect a

gesture. Methods to reduce those errors result in even more problems (see the attempt to cut off velocity)

and inaccuracies (data-loss through filters).

The dynamic time warp algorithm is known to be working well with smaller sets of templates.

In my tests with sets of three templates per gesture and four known gestures (square, circle, triangle, zigzag)

the algorithm worked perfectly. After adding more templates the results became worse as expected,

because some recordings overlapped or were very similar to each other, which resulted in the algorithm to

malfunction.

15

Another reason why dynamic time warp is not a satisfying solution to use in game is that it is not universally

useable. Different users draw gestures in different ways which raises the chance of the algorithm to return

a wrong result. In addition to that, sensor data may vary from device to device, as different sensors could

be built-in.

Regarding the internship:

I liked the possibility to arrange the time to work on the project freely. Summarizing the procedure in a

weekly report helped me to write this report and understand the matter better.

It would have been good to have a clearer instruction, because I do not know the game and its restrictions

for which this project was intended for. Therefore I tried to find general solutions to the tasks given. Some

clues at the beginning would have saved a lot of time.

6. Future Work

The double integration approach offers lots of possibilities to improve results. Those improvements are

mainly based on compensating the errors. Therefore implementing more or better filters could enhance

accuracy. The main problem however, is to eliminate the difference between acceleration and breaking

force which make the cursor ‘drift’ and therefore useless to draw. Fixing this problems could make this

approach a reasonable solution, but I could not find any practical way to do it effectively while researching,

as it has to be calculated on a mobile device.

Because the app is just an implementation of the basic dynamic time warp algorithm, there are some

aspects to tweak, like filters or faster ways (see SparseDTW or FastDTW), but the main way this method

works will remain with its disadvantages. Another approach could be to implement a Hidden Markov

Model8 instead of the dynamic time warp, which has the same preconditions but is known to work very

good with much more templates that could fix the problems of the old algorithm.

8 "Hidden Markov Model." Wikipedia. Wikimedia Foundation, 08 Dec. 2013. Web. 9 Dec. 2013.
<http://de.wikipedia.org/wiki/Hidden_Markov_Model>.

